Effect of Calculation Grid-size, Statistical Uncertainty, and CT Slice-thickness on treatment planning

Matthew Goss, MS, DABR
Allegheny Health Network
Pittsburgh, PA

Disclosures

- Relevant financial relationships
 - Received financial compensation for this presentation from Elekta
Further Disclosures…

…I am a physicist
Background

• Physics BS
 – NOT APPLIED
 – What to do?
• Medical Physics MS
 – More applied
 – Unclear department workflow and connectivity
 – Admittedly low focus on Treatment Planning
 • Sadly common
 • Shortsighted, illogical

First job

• Plan checking
 – Comfort Level
 – OTJ training
• Appreciation
 – LACKING
 – Disconnect of understanding
• Expertise
 – NOT AN EXPERT
 – admit there is a missing piece
Second job

- EBRT planning
 - Start at the bottom
 - Physicist? → doesn't matter
- Appreciation
 - HUMBLING
 - In-depth understanding
- Expertise
 - Becoming an expert
 - Correct the missing piece

Third (current) job

- Back to Clinical Physics
 - Plan checking
 - Technique review
- Connecting the dots
 - (Connecting departments)
 - Putting the pieces together
 - Hands-on in dosimetry
 - Best-practices creation
 - Advocate (two-way street)
AHN Cancer Institute Locations
(23 geographically located sites with 9 comprehensive Cancer Centers)

More than 130,000 cancer treatments delivered for nearly 10,000 cancer patients. 204 physicians: 136 surgeons, 51 medical oncologists, 17 radiation oncologists.

<table>
<thead>
<tr>
<th>Sites</th>
<th>H</th>
<th>MO</th>
<th>RO</th>
<th>SO</th>
<th>CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allegheny General Hospital</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Allegheny Valley Hospital</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bethel Park Health + Wellness Pavilion</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butler Regional Cancer Center</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canonsburg General Hospital</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarion</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forbes Regional Hospital</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grove City</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jefferson Hospital</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>New Castle</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Kensington</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohio Valley</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peters Health + Wellness Pavilion</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punxsutawney</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richard G. Laube Cancer Center (Kittanning)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Robinson Township</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somerset Oncology Center</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. Vincent Hospital</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tony Teramana Cancer Center (Steubenville)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uniontown</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weirton</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Penn Hospital</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Wexford Health + Wellness Pavilion</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

H - Hematology - 2 sites
MO - Medical Oncology - 16 sites
RO - Radiation Oncology - 14 sites
SO - Surgical Oncology - 14 sites
CT - Cellular Therapy/Transplant - 1 site
Need for Standardization

• AHN → 14 regional sites
 – Assumption of same quality of care, same access to techniques (EBRT, SBRT, Brachytherapy, etc)
 – Clinical training/teaching

• Elekta Monaco 5 (5.5.1 August 2019 upgrade)
 – New challenges
 – New techniques

• Centralized teaching and training program
 – Same metric, methods, expected outcomes
 – Expectation of ‘knowledge propagation’
 – Basic agreed-upon parameters*

Case study

• Dosimetry:
 – “What grid size and uncertainty should we use for X plan?”
 – “What about the QA plan for plan X?”

• Physics:
 – “………..”
Basic questions

• Dosimetry → where to begin?
 • MC (grid size, statistical uncertainty, QA plans)
 • CC (grid size, CT slice thickness)

• Physics → where to find the answer?
 • Vendor information
 • Outside opinion
 – Colleagues
 – Independent studies

• Test ourselves*

Monte Carlo

• Patients: H&N, Brain, SBRT Lung
 • 1mm, 2mm, 3mm grid size
 • 1% per calc, 3% per control point SU

• Comparison
 • Dose plane from Monaco TPS
 • DVH statistics for PTV and OARs
 • Time for calculation
Collapsed Cone

- **Patients:** H&N, Brain, SBRT Lung
 - 1mm, 2mm, 3mm GS
 - 1.5mm, 3mm CT slice thickness (H&N and SBRT Lung), 1mm, 2mm, 3mm (Brain)

- **Comparison**
 - Dose plane from Monaco TPS
 - DVH statistics for PTV and OARs
 - Time for calculation

Monte Carlo Results

- Calc time or 3D MC:
 - Longest time was 8min 30sec
 - Shortest was 7sec

3D fields, MC forward-calculation
Monte Carlo Results cont.

 VMAT fields, MC calculation

- Calc time VMAT MC:
 - Longest was 1 hour 9 mins
 - Shortest was 35 sec

3D MC

IMRT MC

- SNC Patient software
 - Version 2.0
- Dose planes exported and analyzed
 - Sagittal
- Compared to 'clinical standard'
 - 3% pcp, 3mm GS
Monte Carlo Results (cont)

- Dose Planes
 - 100% of points agreed 3%3mm and 2%2mm
 - 94% agreed 1%1mm
- DVH statistics
 - mean dose for all structures within 1%
- Calc time (VMAT)
 - Longest (H&N, 1mm GS 3% pc) was 1 hour 9 mins
 - Shortest (Lung, 3mm GS 1%pcalc) was 35 sec
- 1mm GS: too much noise
Collapsed Cone planar-array dose comparisons

<table>
<thead>
<tr>
<th>SNC Cone Type</th>
<th>Dose Planes</th>
<th>Sagittal</th>
<th>Compared to 'resolution standard'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version 2.0</td>
<td>99%</td>
<td>96%</td>
<td>Smallest CT Slice thickness</td>
</tr>
<tr>
<td></td>
<td>96%</td>
<td>96%</td>
<td>Smallest GS</td>
</tr>
</tbody>
</table>

Calc Time
- Longest calc time (1mm GS H&N 3mm slice thickness) was 2.5 mins
- Shortest (3mm GS brain 3mm slice thickness) was 7 seconds

Collapsed Cone Results (cont)

- **Dose Planes**
 - 99% of points agreed 3%3mm (one at 95%)
 - 96% passed at 2% 2mm (most above 99%)
 - a minimum of 52% agreed 1%1mm

- **DVH statistics**
 - mean dose for all PTVs was within 1.5%
 - Other OARs varied by up to 11%

- **Calc Time**
 - Longest calc time (1mm GS H&N 3mm slice thickness) was 2.5 mins
 - Shortest (3mm GS brain 3mm slice thickness) was 7 seconds
Conclusions

• Monte Carlo
 – No gain for smaller grid size, longer calc time (DOSIMETRY)
 – Some indications for superficiality and small volume

• Collapsed Cone
 – Minimal time gain for smaller grid size, but points to higher accuracy (DOSIMETRY/PHYSICS)
 – Raises new questions:
 » Some indications for small volume?
 » Number of points (varies by slice thickness)
 » Slice thickness study

Recommendations

• Dosimetry
 • Technical
 – For MC plans, 3mm grid size is appropriate for >95% of cases
 – 1% pcalc is adequate, can go to 3%pcp, may tighten up idls, lower max hotspot
 – Can and should use the same criteria for QA plans
 – For CC plans, smaller is usually better
 • Practical
 – Time to calc and throughput of patients
 – Trusting our information → retreat cases, OAR constraints
 – Standardized starting points, comparison of outcomes, coherent training, evaluation*

• Physics
 • Plan-checking
 • Cross-coverage
 • Expectations/assumptions of standardization
Raises new Questions

- Physicist colleague
 - Calculating ≠ Optimizing!!
 - Back to the drawing board

- New investigation
 - Birds-eye view
 - H&N only (more disease sites to follow)
 - 3mm, 2mm GS
 - 1% pcalc, 3% pcp, 2% pcp
 - Start of optimization → end, no changes to Opt Parameters

Preliminary conclusions

- Comparison to ‘recommended standard’:
 - Four-fold time increase maintains
 - Planning is more than calcing
 - PAY ATTENTION, PHYSICS
1% pcalc vs 3% pcp

- Elekta training
 - Start with 1% per calculation
 - Move to 3% per control point
 - If close to OAR constraints
 - If global max to high
 - If IDLs need tightening
 - If time-permitting*

- Time effect
 - H&N case, 3mm GS
 - 7 mins longer
 - Worth the time?

Further investigation

- Full optimization time study
 - More disease sites
 - Dose accuracy comparisons

- CT slice thickness study (ongoing)
- Correlation of points with dose agreement
Need for Standardization (revisited)

• Competency and Credentialing Program
 – Accountability
 – Cross-coverage
 – Knowledge propagation

• AHN program
 – Dosimetry-driven
 – Task based
 – Individual spreadsheets → Master Spreadsheet (administration)

Elekta Standardization

• Automated Planning
 – Protocol Driven
 – Scorecard → ‘traffic light’
 – Multicriterial Optimization (MCO)

• Centralized Server
 – Beam data management (physics)
 – Planning efficiency (calculation speed)
 – Administrative benefit
Conclusion

• Dosimetry/Physics
 • Larger system → communication/expectation
 • Inter-department Cooperation
 • Problem-solving
 – Identify clinical issues → loss of efficiency/poor outcomes?
 – Research → don’t reinvent the wheel…
 …but don’t trust it unless you’re comfortable with the source
 – Use tools at your disposal to address the problem
 – Make coherent, concise recommendations
 – Reinforce practice
 • Always be improving

Special Thanks

AHN Physics and Dosimetry
 – Brian Leicher, CMD
 – Lisa Spanovich, CMD
 – Dan Pavord, MS
Special Thanks

Elekta
– Anthony Brown
– Brad Read
– Stephanie King
– Randy Larson

Thank you

• Questions?
Lunch Symposium passcode

546