Reirradiation of Brain Tumor in Pediatric Patient using VMAT
A Case Study

Christine Chung, B.S.
Senior Medical Dosimetry Student
The University of Texas MD Anderson Cancer Center
School of Health Professions
cc Chung2@mdanderson.org

Contents

1 BACKGROUND
 Patient
 Disease Site

3 PLANNING
 Second Course of Radiation
 Second Course “Adaptive” Plan

3 CONCLUSION
 Final Thoughts
 Thank You’s
 References
 Questions
Disclosures

I have no disclosures to report.
The Case Study

- 4 year old male
- Diagnosed with recurrent anaplastic ependymoma (WHO Grade III)
- Previously treated with passive scatter proton therapy 2 years prior
 - Prescribed: 54 Gy in 30 fractions

Ependymoma

- Form from glial cells that line the ventricles in brain and spinal canal
 - Most common location in children is the posterior fossa
- Third most common type of pediatric brain tumor (6-10%)
 - Median age of diagnosis is 3.6 years old
 - Unknown cause
- Symptoms depend on location, however headache and vomiting are the most common
- Diagnosed with imaging and biopsy
 - Lumbar puncture to look for spread
- Treatment: surgery, radiation, chemotherapy
- 5 year survival: 67% (overall), 39% (progression-free)
- 10 year survival: 50% (overall), 29% (progression-free)
- Recurrence: usually occurs at primary tumor site (74%)
Case Study: Reirradiation of Brain Tumor in Pediatric Patient using VMAT

Prescription – VMAT

Rt base of skull 3960 cGy in 22 fractions

GTV: 3960 cGy
V100% ≥ 95%, V95% ≥ 99%,
V105% ≤ 10%, Dmax ≤ 110%

CTV: 3960 cGy
V100% ≥ 95%, V95% ≥ 99%,
V105% ≤ 10%, Dmax ≤ 110%

PTV: 3960 cGy
V100% ≥ 95%, V95% ≥ 99%,
V105% ≤ 10%, Dmax ≤ 110%

Composite Constraints (Protocol)

Brain – PTV:
Max dose 0.03cc ≤ 95 Gy
Max dose 1cc ≤ 90 Gy

Optic Chiasm:
Max dose 0.3cc ≤ 60 Gy

Optic Nerves:
Max dose 0.3cc ≤ 60 Gy

Brainstem:
Max dose 1cc ≤ 70 Gy

If constraints cannot be met:
GTV to 39.6 Gy, **CTV** and **PTV** to 36 Gy
Protocol: Dose-Volume Constraints for Reirradiation of Recurrent Brain Tumors

- Currently, no dose-volume recommendations for guiding brain reirradiation treatment planning

- Pilot study:
 - Dose-volume constraints are determined by:
 - Dx, age, concurrent chemo, and interval since previous radiation treatment
 - Follow-ups for 25 months after completion of reirradiation
 - The adult arm is closed: 21 adults; 1 case of grade 4 radionecrosis
 - The pediatric arm of the protocol is still open

- Previous study (2016)²
 - 12 children with recurrent brain tumors treated at MDACC
 - 2 year overall survival of 58% after reirradiation
 - No radiation-related high-grade hearing loss, visual pathway deficit, or IQ loss

Deformable Image Registration

FIRST COURSE CT
RT1

BLENDED CT
CTs Overlaid

SECOND COURSE CT
RT2
DEFORMATION PROCESS

- Physics performs and validates deformation
 - Match bony anatomy → algorithms deform soft tissue of moving CT to better match target CT using Hounsfield units assigned to voxels → dose is “attached” to each voxel and deforms with the image
- Physician validates deformed contours of targets and normal tissue structures
 - Aids physicians to determine changes in volumes and creates a more accurate plan sum.³
RT2 Plan Set-up

Beams
- 2 full arcs, CW and CCW

Prescriptions
- 39.6 Gy in 22 fractions
- Load RT1 deformed dose for composite plan

Contours by Physician
- Targets, Brainstem, Optic Chiasm, Pituitary, Hippocampus, Hypothalamus, Spinal Cord, Optic Nerves

Contours by Dosimetrist
- Eyes, Lens, Cochleas, Brain, Planning Structures

Review RT1
Review RT1

Composite Constraints
- **Brain – PTV:** Max dose 0.03cc ≤ 95 Gy, Max dose 1cc ≤ 90 Gy
- **Optic Chiasm:** Max dose 0.3cc ≤ 60 Gy
- **Optic Nerves:** Max dose 0.3cc ≤ 60 Gy
- **Brainstem:** Max dose 1cc ≤ 70 Gy

If constraints cannot be met: GTV to 39.6 Gy, CTV and PTV to 36 Gy

Planning Structures

pPTV
- Account for dose fall off for OARs with max dose constraints
 - Formula: $2.916 \times \ln(\text{difference in Gy}) + 0.044 = mm$
 - Ex: $2.916 \times \ln(26) + 0.044 = 9.5 \text{ mm expansion from brainstem}$
 - $39.6 \text{ Gy } Rx - (70 \text{ Gy } RT2 \text{ composite max dose constraint } - 56 \text{ Gy } -RT1 \text{ max dose}) \approx 26 \text{ Gy}$
- Create expansions to take out of PTV
Things to keep in mind while you plan

- Make small edits, otherwise it may be hard to tell what breaks your plan
- Review composite plan after each run
- Set isodose lines that will help to visualize (ex. 70 Gy for brainstem)

 Ex:

 15 Gy in RT2 ≈ 70 Gy in RT1+RT2 composite plan in the brainstem

RT1 deformed onto RT2 CT

Dose (cGy)

- 6000
- 5400
- 4150
- 3960
- 3600
- 2500
- 2000
- 1000

- 6000
- 5400
- 4150
- 3960
- 3600
- 2500
- 2000
- 1000
Case Study: Reirradiation of Brain Tumor in Pediatric Patient using VMAT

RT2 – Early Optimization Run

“Dose painting”
Create planning structures as needed that will fill in missing Rx, cool hot spots, and avoid that will push dose off of OARs and normal tissue

<table>
<thead>
<tr>
<th>Dose (cGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3960</td>
</tr>
<tr>
<td>3600</td>
</tr>
<tr>
<td>2500</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>1000</td>
</tr>
</tbody>
</table>

RT2 – Later Optimization Run

“Dose painting”
Typically start with target coverage, then slowly tighten plan to see how low you can push the normal tissue and make the plan more conformal and homogeneous

<table>
<thead>
<tr>
<th>Dose (cGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3960</td>
</tr>
<tr>
<td>3600</td>
</tr>
<tr>
<td>2500</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>1000</td>
</tr>
</tbody>
</table>
Difficulty meeting both target coverage objective and brainstem constraint

Discuss priorities with physician

Physician approves higher brainstem constraint to 80 Gy

Approved Plan

Tip: Brainstem composite max dose 1cc ≤ 80 Gy

RT1: 56 Gy

80 Gy – 56 Gy = 24 Gy

Only 1cc of the area that overlapped with the RT1 56 Gy can receive 24 Gy, and the rest can receive more

VMAT allows dose to “wrap” around brainstem
Case Study: Reirradiation of Brain Tumor in Pediatric Patient using VMAT

Composite Plan

Composite Constraints

- **Brain – PTV**: Max dose 0.03cc ≤ 95 Gy ✓
- Max dose 1cc ≤ 90 Gy ✓✓
- **Optic Chiasm**: Max dose 0.3cc ≤ 60 Gy ✓
- **Optic Nerves**: Max dose 0.3cc ≤ 60 Gy ✓
- **Brainstem**: Max dose 1cc ≤ 70 Gy ✗ → 80 Gy ✓

Dose (cGy)

- 9500
- 9360
- 8000
- 7000
- 6000
- 5400
- 4150
- 3960
- 3600
- 2500
- 2000
- 1000

Weekly QA: higher dose is more appropriate

Adaptive plan for remaining treatments
Adaptive Plan (RT2a)

o New prescription:
 • 50.4 Gy to the GTV
 • 45 Gy to PTV
 • 28 fractions

o What does this mean for dose constraints?
 • Discuss with physician: protocol, target coverage vs OAR constraints

<table>
<thead>
<tr>
<th>RT2 Composite Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain – PTV: Max dose 0.03cc ≤ 95 Gy, Max dose 1cc ≤ 90 Gy</td>
</tr>
<tr>
<td>Optic Chiasm: Max dose 0.3cc ≤ 60 Gy</td>
</tr>
<tr>
<td>Optic Nerves: Max dose 0.3cc ≤ 60 Gy</td>
</tr>
<tr>
<td>Brainstem: Max dose 1cc ≤ 80 Gy</td>
</tr>
</tbody>
</table>

Adaptive Plan (RT2a)

o New prescription:
 • 50.4 Gy to the GTV
 • 45 Gy to PTV
 • 28 fractions

o What does this mean for dose constraints?
 • Discuss with physician: protocol, target coverage vs OAR constraints

<table>
<thead>
<tr>
<th>RT2a Composite Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain – PTV: Max dose 0.03cc ≤ 105 Gy, Max dose 1cc ≤ 100 Gy</td>
</tr>
<tr>
<td>Optic Chiasm: Max dose 0.3cc ≤ 75 Gy</td>
</tr>
<tr>
<td>Optic Nerves: Max dose 0.3cc ≤ 75 Gy</td>
</tr>
<tr>
<td>Brainstem: Max dose 1cc ≤ 80 Gy</td>
</tr>
</tbody>
</table>
Adaptive Planning3,4

- Adaptive planning is the re-planning of a radiation therapy treatment plan during the course of treatment.
- Possible reasons for an adaptive plan: changes in patient set-up, tumor volume, or patient anatomy, or any other situation that physician/physics deems necessary to alter the current plan of treatment
 - It is necessary when sufficient target volume coverage and/or organ at risk sparing is not achieved by the original plan
- Typically a new CT data set is acquired and registered with the original CT
 - A “verification plan” can be done to validate if an adaptive plan is necessary
- Turn around time for the adaptive plan is relatively quick
 - To avoid unnecessary delays, the patient will most often continue with the original plan until the adaptive plan is completed and approved

NOTE
This “adaptive” plan was not done a new CT, therefore it did not have a verification plan. The new plan was planned on the same CT; this is also commonly called a rework.
RT2a – Faux “Verification Plan”

Scale RT2 to 28 fx

Evaluate composite

<table>
<thead>
<tr>
<th>Dose (cGy)</th>
<th>5300</th>
<th>5040</th>
<th>4500</th>
<th>4140</th>
<th>3701</th>
<th>3600</th>
<th>2400</th>
<th>1900</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dose (cGy)</th>
<th>5000</th>
<th>4600</th>
<th>4150</th>
<th>4110</th>
<th>3701</th>
<th>3600</th>
<th>2800</th>
<th>2500</th>
</tr>
</thead>
</table>

RT2a Composite Constraints

- **Brain – PTV**: Max dose 0.03cc ≤ 105 Gy, Max dose 1cc ≤ 100 Gy
- **Optic Chiasm**: Max dose 0.3cc ≤ 75 Gy
- **Optic Nerves**: Max dose 0.3cc ≤ 75 Gy
- **Brainstem**: Max dose 1cc ≤ 80 Gy
RT2a Plan Set-up

Beams
- 2 full arcs, CW and CCW

Prescriptions
- 39.6 Gy in 22 fractions → 50.4 Gy in 28 fractions
- Load deformed dose for composite plan
- Load RT2, set to 5 fractions

Contours
- None (use same contours because adaptive plan was done on same CT)

*Patient was treated for 4 days + 1 day was given to complete plan = 5 days on RT2
RT2a Plan Set-up

Beams
- 2 full arcs, CW and CCW

Prescriptions
- 39.6 Gy in 22 fractions → 50.4 Gy in 28 fractions
 *Set this to 180 cGy/fraction for 23 fractions (28-5)
- Load deformed dose for composite plan
- Load RT2, set to 5 fractions
 *Patient was treated for 4 days + 1 day was given to complete plan = 5 days on RT2

Contours
- None (use same contours because adaptive plan was done on same CT)

Preliminary Planning

1. Review DVHs
2. Scroll through OARs
3. Calculations:
 - The patient received 180 cGy x 5 days = 900 cGy
 - Plan RT2a to 23 fx:
 - GTV: 5040 cGy/28 fx = 180 cGy → 180 cGy x 23 fx = 4140 cGy
 - PTV: 4500 cGy/28 fx = 161 cGy → 161 cGy x 23 fx = 3701 cGy
4. Create expansions for OARs
5. Create pPTV(s)
Case Study: Reirradiation of Brain Tumor in Pediatric Patient using VMAT

Review What Has Been Given

RT2 scaled down to 5 fx

RT1 + RT2 (5 fx) Composite

Review What Has Been Given – RT1 + RT2 (5 fx)
Case Study: Reirradiation of Brain Tumor in Pediatric Patient using VMAT

1. Planning structures take into account RT1+RT2(5fx)

- 49 Gy isodose cloud
Planning structures take into account RT1 + RT2 (5fx)
1. 49 Gy isodose cloud
2. 58 Gy isodose cloud
RT2a Planning Structures: pPTVs

- Planning structures take into account RT1+RT2 (5fx)
 1. 49 Gy isodose cloud
 2. 58 Gy isodose cloud
 3. PTV in brainstem that received 58 Gy
 - pPTV22 (80 Gy – 58 Gy)
 4. PTV in brainstem that received 49 Gy – (pPTV22 + 2 mm)
 - pPTV31 (80 Gy – 49 Gy)

1. Dose fall off from 50.4 Gy CTV+GTV to pPTV22 and pPTV31
RT2a Planning Structures: pPTVs

1. Dose fall off from 50.4 Gy $\text{CTV} + \text{GTV}$ to pPTV22 and pPTV31
 - Expand the pPTV22 by 8 mm
 \[\approx 2.916 \times \ln(50.4 - 22) + .044 \]
 - Expand the pPTV31 by 7 mm
 \[\approx 2.916 \times \ln(50.4 - 31) + .044 \]
1. Dose fall off from 50.4 Gy CTV + GTV to pPTV22 and pPTV31
 • Expand the pPTV22 by 8 mm
 \(\approx 2.916 \times \ln(50.4-22) + .044 \)
 • Expand the pPTV31 by 7 mm
 \(\approx 2.916 \times \ln(50.4-31) + .044 \)

2. CTV + GTV – Expansions
 ➢ pPTV50.4 in CTV + GTV

3. PTV – (CTV + GTV + 1 mm) – Expansions
 ➢ pPTV45 in PTV
RT2a Planning Structures: pPTVs

1. Dose fall off from 50.4 Gy CTV+GTV to pPTV22 and pPTV31
 - Expand the pPTV22 by 8 mm
 \(\approx 2.916 \times \ln(50.4-22) + .044\)
 - Expand the pPTV31 by 7 mm
 \(\approx 2.916 \times \ln(50.4-31) + .044\)

2. CTV+GTV – Expansions
 - pPTV50.4 in CTV+GTV

3. PTV – (CTV+GTV+1 mm) – Expansions
 - pPTV45 in PTV

RT2a – Early Optimization Run

- Start with more loose constraints
- Adjust the “pPTV31” and “pPTV22” as you need to meet brainstem constraints
 - Changed to manage 24 Gy and 19 Gy, respectively
RT2a – Later Optimization Run

- Focus on coverage first

Dose (cGy)
- 5300
- 5040
- 4500
- 4140
- 3701
- 2400
- 1900

RT2a – Later Optimization Run

- Tighten up the dose as you optimize
- Adjust the “pPTV31” and “pPTV22” as you need to meet brainstem constraints
 - Initially changed to manage 24 Gy and 19 Gy, respectively
 - Towards the end of optimization, changed again to manage 22 Gy and 18.5 Gy, respectively
Approved Plan

RT2a to 23 fx

CTV + GTV to 4140 cGy
PTV to 3701 cGy

RT2a to 23 fx
RT2 to 5 fx

CTV + GTV to 6000 cGy
PTV to 4500 cGy

RT2a to 23 fx
RT2 to 5 fx
RT1 deformed dose

Composite: RT1 + RT2 (5fx) + RT2a

Composite Constraints
- Brain – PTV: Max dose 0.03cc ≤ 105 Gy
- Max dose 1cc ≤ 100 Gy
- Optic Chiasm: Max dose 0.3cc ≤ 75 Gy
- Optic Nerves: Max dose 0.3cc ≤ 75 Gy
- Brainstem: Max dose 1cc ≤ 80 Gy
CONCLUSION

Final Thoughts

What we’ve learned:
- Treatment planning has a lot of moving parts
- Communication is key
 - Need upfront dose constraints from physician
- Adaptive plans can be time consuming
 - Preliminary planning and many iterations
- Adaptive plans require quick turn around time
 - The sooner an adaptive plan is implemented, the more effective it is

Other thoughts:
- Adaptive plans tend to look different and sometimes physicians want the same plan
- Tumors don’t always shrink: sometimes targets get bigger or completely disappear, and the tissue landscape changes drastically
- Protocol constraints

Patient Update
- Despite being more aggressive with the dose, patient recently has had progressive disease
Special Thanks to:

Dosimetrists
Kham Nguyen, B.S., C.M.D.
Jordan Sutton, B.S., C.M.D.
Tyler Williamson, B.S., C.M.D.
Adam Blake, B.S., C.M.D.
Tiffany Robinson, B.S., C.M.D.
Kelly Perrin, B.S., C.M.D.
Neal Rubeno, B.S., C.M.D.
Cody Wages, B.S., C.M.D.
Michael Rambaud, B.S., C.M.D.
Rachel Hunter, B.S., C.M.D.
Mayank Amin, B.S., C.M.D.
Katina Crabtree, B.S., C.M.D.
Bobby Gongora, B.S., C.M.D.
Catherine Evans, B.S., C.M.D.

Physics
Ryan Hurt, B.S.

Radiation Oncologists
Susan McGovern, M.D., Ph.D.

School of Health Professions
Jamie Baker, Ph.D., M.Ed., B.S., C.M.D.
Mahsa Dehghanpour, Ed.D., M.S., C.M.D.
Temiloluwa (Nife) Esho, B.S.
Juanita Thompson, B.S.
Richard Corbett, B.S.

REFERENCES

Questions?

Thank You!

Christine Chung
Senior Medical Dosimetry Student
cc Chung2@mdanderson.org