Towards Personalized Therapy in Lung Cancer with Functional Imaging

Jing Zeng, MD
Associate Professor, Chief of Thoracic Service
Department of Radiation Oncology, University of Washington School of Medicine
Associate Medical Director, Seattle Cancer Care Alliance Proton Therapy Center

June 18th, 2019
American Association of Medical Dosimetrists 44th Annual Meeting

Disclosures

- No conflicts of interest
Objectives

• Understand different imaging modalities, contouring, and treatment planning for functional lung avoidance radiation planning
• Understand different imaging modalities, contouring, and treatment planning for response-adaptive radiation planning in lung cancer

Clinical Challenge

How do we continue to improve outcomes in unresectable stage III NSCLC?
• Decrease toxicity
• Improve cancer control

Radiation Pneumonitis is a Problem!

- PACIFIC trial: most frequent AE leading to discontinuation of trial regimen
 - Pneumonitis (4.8%)
 - Radiation pneumonitis (1.3%)
 - Pneumonia (1.1%)

MVA:
- V20 Gy
- Chemo
- Age (trend)

We Are Not Great At Predicting It

Table 5 Risk of radiation pneumonitis based on V20 (volume of lung receiving 20 Gy or more) in the whole cohort of patients (training and validation set combined)

<table>
<thead>
<tr>
<th>Lung volume receiving ≥20 Gy</th>
<th>Symptomatic pneumonitis (% of patients)</th>
<th>Fatal pneumonitis (% of patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td><20%</td>
<td>18.4%</td>
<td>0.0%</td>
</tr>
<tr>
<td>20%-29.99%</td>
<td>30.3%</td>
<td>1.0%</td>
</tr>
<tr>
<td>30%-39.99%</td>
<td>32.6%</td>
<td>2.9%</td>
</tr>
<tr>
<td>≥40%</td>
<td>35.9%</td>
<td>3.5%</td>
</tr>
</tbody>
</table>

SPECT Perfusion Imaging in NSCLC

- 123 pts tx with RT for thoracic cancers at Duke
- Serial SPECT scans, registered with simulation CT

Clinical Utility of Lung Perfusion MAA SPECT for Pneumonitis Prediction

- 55 Duke patients and 65 NKI patients
- MLD, OpRP, pre-RT DLCO unable to accurately segregate patients into high vs. low risk groups for RP

SPECT/CT Lung Perfusion Imaging

Single Institution Modern SPECT/CT

- SPECT/CT=better spatial resolution and quantitative accuracy than SPECT
- 26 patients with lung cancer and pre-RT perf/vent SPECT/CT
- SPECT-based DFH parameters outperformed standard DVH parameters as predictors of RP in ROC

SPECT/CT Perfusion Imaging at UW

- 2013: Protocol-Specific Research Support grant, part of Fred Hutchinson Cancer Center Support Grant
- Supporting clinical trial: “Pulmonary Functional Imaging for Radiation Treatment Planning for Lung Cancer”
- Three SPECT/CT scans with 99mTc-MAA and 99mTc-DTPA
 - Pre-radiation treatment
 - Mid-radiation treatment
 - 3 months post-radiation treatment

PI: Zeng
Maybe We Could Predict Pneumonitis?

Functional Lung Avoidance RT?

1. Correlation to outcome: imaging biomarker association to radiation pneumonitis or PFT decline
2. Spatial stability: functional lung imaging-based avoidance regions must be spatially stable / reproducible
3. Dose modifying effect: changes in functional lung imaging must be linked to local radiation dose magnitude
4. Avoidance plan feasibility: functional lung avoidance RT planning must show dosimetric advantage while meeting conventional target + normal tissue objectives
2. Stable Perfusion Imaging for Functional Lung Avoidance RT

MAA SPECT perfusion: median Pearson $R = 0.95$ (IQR 0.83-0.96)

Unpublished data.

3. Regional Perfusion Response at 3 Months Post RT

Unpublished data.
3. MAA SPECT/CT Lung Perfusion Dose Response Curves

- Perfusion reduction normalized to lung regions < 5 Gy EQD2
- Shape of individual dose-response curves sensitive to baseline lung function and treatment regimen

Baseline perfusion defect (VQ mismatch)

SBRT Regimen

Baseline lung function normal

4. Functional Avoidance RT Plan

- Redistribute lung dose away from perfused regions
- Highly functional lung = >70% of max perfusion (best AUC=0.93 with grade 2+ PNM prediction), normalized to aortic arch on SPECT/CT

• Mean perfused lung dose reduced to < 10 Gy over cohort of patients
4. Functional Lung Avoidance RT Plan

- Define sub-lung perfusion level contours for differential functional avoidance planning
- Autosegmentation via threshold levels
- Evaluate pMLD (goal < 10 Gy) and pV20 (goal < 15%)

PERF MAA SPECT Avoidance Objectives

<table>
<thead>
<tr>
<th>Copy Data Below ↓</th>
<th>Lung-CTV</th>
<th>PERF L1</th>
<th>PERF L3</th>
<th>PERF L5</th>
<th>PERF L7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max (CNTS) Value</td>
<td>1817.00</td>
<td>265.00</td>
<td>782.00</td>
<td>1299.00</td>
<td>1817.00</td>
</tr>
<tr>
<td>Mean (CNTS) Value</td>
<td>640.21</td>
<td>160.43</td>
<td>656.66</td>
<td>1162.10</td>
<td>1604.42</td>
</tr>
<tr>
<td>Median (CNTS) Value</td>
<td>628.00</td>
<td>164.00</td>
<td>657.00</td>
<td>1158.00</td>
<td>1581.00</td>
</tr>
<tr>
<td>Min (CNTS) Value</td>
<td>7.00</td>
<td>7.00</td>
<td>524.00</td>
<td>1041.00</td>
<td>1558.00</td>
</tr>
<tr>
<td>Volume (ml) Value</td>
<td>3564.89</td>
<td>617.11</td>
<td>1003.66</td>
<td>322.61</td>
<td>10.59</td>
</tr>
</tbody>
</table>

- Functional dose painting tool: MIM workflow → RayStation plan integration
Functional Lung Imaging Options

- **Perfusion**
 - 99mTc-MAA SPECT/CT
 - 68Ga-MAA PET/CT

- **Ventilation**
 - 99mTc-DTPA SPECT/CT
 - 99mTc-Technegas SPECT/CT
 - 4DCT-derived
 - 3He MRI
 - 68Ga-Galligas PET/CT

- **Inflammation**
 - FDG PET/CT

Pros

- 99mTc-MAA SPECT most widely studied for lung function
- Fully quantitative
- Can be gated to respiratory motion
- No radiation
- Functional sequences
- Predominant modality in RT imaging

Cons

- Uses radiation for imaging
- Poorer spatial and temporal resolution than CT/MRI/PET
- Gallium-68 MAA for perfusion
- Galligas for ventilation
- Multiple tissue interfaces & lack of protons in lung
- Special equipment, expertise, and compounds
- CT registration
- Uses radiation for imaging
- Expertise to interpret 4D scans for function
- Conflicting results in validation against established imaging methods
Functional Lung Avoidance RT

a) fV20

<table>
<thead>
<tr>
<th>Source</th>
<th>MD (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfusion</td>
<td>10.17 [6.46; 13.89]</td>
</tr>
<tr>
<td>Shioyama et al., 2007</td>
<td></td>
</tr>
<tr>
<td>Agrawal et al., 2012</td>
<td>6.40 [0.95; 11.86]</td>
</tr>
<tr>
<td>Tian et al., 2014</td>
<td>3.14 [1.82; 4.66]</td>
</tr>
<tr>
<td>Siva et al., 2015</td>
<td>3.80 [0.39; 7.21]</td>
</tr>
<tr>
<td>Siva et al., 2016</td>
<td>0.88 [-0.84; 2.60]</td>
</tr>
<tr>
<td>Total</td>
<td>4.42 [1.66; 7.16]</td>
</tr>
</tbody>
</table>

Heterogeneity: $\chi^2 = 21.84$ (P < 0.01), $I^2 = 82\%$

<table>
<thead>
<tr>
<th>Source</th>
<th>MD (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilation</td>
<td>3.40 [0.81; 5.99]</td>
</tr>
<tr>
<td>Yaremko et al., 2007</td>
<td></td>
</tr>
<tr>
<td>Siva et al., 2015</td>
<td>1.90 [-3.07; 6.87]</td>
</tr>
<tr>
<td>Waxweiler et al., 2017</td>
<td>5.60 [4.52; 6.68]</td>
</tr>
<tr>
<td>Total</td>
<td>4.41 [2.37; 6.45]</td>
</tr>
</tbody>
</table>

Heterogeneity: $\chi^2 = 4.07$ (P = 0.13), $I^2 = 51\%$

Total: $\chi^2 = 4.19$ (P < 0.01), $I^2 = 80\%$

b) fMLD

<table>
<thead>
<tr>
<th>Source</th>
<th>MD (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfusion</td>
<td>0.77 [0.54; 1.00]</td>
</tr>
<tr>
<td>St-Hilaire et al., 2011</td>
<td></td>
</tr>
<tr>
<td>Agrawal et al., 2012</td>
<td>7.93 [4.62; 11.24]</td>
</tr>
<tr>
<td>Siva et al., 2015</td>
<td>1.70 [0.27; 3.13]</td>
</tr>
<tr>
<td>Siva et al., 2016</td>
<td>1.22 [0.20; 2.24]</td>
</tr>
<tr>
<td>Total</td>
<td>1.96 [0.57; 3.39]</td>
</tr>
</tbody>
</table>

Heterogeneity: $\chi^2 = 19.92$ (P < 0.01), $I^2 = 86\%$

<table>
<thead>
<tr>
<th>Source</th>
<th>MD (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilation</td>
<td>5.62 [3.27; 7.97]</td>
</tr>
<tr>
<td>Munawar et al., 2010</td>
<td></td>
</tr>
<tr>
<td>Kadoya et al., 2015</td>
<td>1.43 [0.47; 2.39]</td>
</tr>
<tr>
<td>Siva et al., 2015</td>
<td>1.20 [-1.11; 3.51]</td>
</tr>
<tr>
<td>Total</td>
<td>2.63 [0.14; 5.12]</td>
</tr>
</tbody>
</table>

Heterogeneity: $\chi^2 = 10.88$ (P < 0.01), $I^2 = 82\%$

Total: $\chi^2 = 2.18$ [1.09; 3.26], $I^2 = 84\%$

Functional Lung Avoidance RT Challenges

- Perfusion or ventilation, or both?
- Image registration of functional images to treatment planning CT
- Timing between scans
- Perfusion deficits due to tumor and reperfusion
- Large variations in definition of functional lung, and dose constraints for avoidance
From Functional Lung Avoidance Onto Response Adaptive Therapy

RTOG 0617: More is Not Better?

- Uniform dose escalation to 74 Gy is detrimental in unresectable stage III NSCLC
- But more radiation must kill more cancer?!!
- Who would most likely benefit from dose escalation?

FDG PET/CT Response During RT Correlates with Lung Cancer Survival

Outcome prediction improves with mid-tx response relative to baseline FDG PET

van Elmpt JNM 2012
Huang EJNMMI 2011

FDG PET Spatial Correlation with Lung Cancer Recurrence/Progression

Project Funding Timeline

- 2014-2016: RSNA Research Scholar Grant
 - PI: Dr. Stephen Bowen, Medical Physics
- 2016: 5-year R01CA204301
 - Co-PIs: Dr. Stephen Bowen and Dr. Jing Zeng
 - Supporting clinical trial: “Personalized radiation therapy through response-adaptive dose escalation and functional lung avoidance (FLARE RT)”
 - Salary support for Co-PIs
 - Post-docs
 - Research coordinator
 - Statistician
 - Scan costs
 - Supplies

FLARE RT Trial Schema

- All patients get functional lung avoidance RT → potential toxicity benefit
- Only high local failure risk patients get FDG PET-guided dose escalation → potential survival benefit
- Primary endpoint: 2 year overall survival
Multi-Disciplinary Team Effort!

- Medical Oncology
- Thoracic Surgery
- Radiation Oncology

Upstaging with Repeat PET/CT

- 20 patients required a repeat PET/CT for the trial
- All 20 patients had an initial PET/CT performed for staging
- Median days between initial and repeat PET/CT was 35 days

Change in Management

- 2/20 patients (10%) were found to have metastatic disease on repeat PET/CT
- 5/20 patients (25%) had increased nodal involvement, increasing size of their radiation fields

Predicting Change in Management?

- No statistically significant differences between two groups
- Trend towards larger, more FDG avid tumors being upstaged

<table>
<thead>
<tr>
<th></th>
<th>Number of Patients</th>
<th>Median Days Between Scans</th>
<th>Median SUV_{max}</th>
<th>Median SUV_{mean}</th>
<th>Median SUV_{peak}</th>
<th>Median MTV (ml)</th>
<th>Median TLG (SUV ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Patients</td>
<td>20</td>
<td>35</td>
<td>11</td>
<td>6</td>
<td>9</td>
<td>36</td>
<td>283</td>
</tr>
<tr>
<td>Upstaged</td>
<td>7</td>
<td>34</td>
<td>13</td>
<td>8</td>
<td>13</td>
<td>115</td>
<td>883</td>
</tr>
<tr>
<td>Not-Upstaged</td>
<td>13</td>
<td>36</td>
<td>11</td>
<td>6</td>
<td>9</td>
<td>35</td>
<td>201</td>
</tr>
</tbody>
</table>

Predicting Change in Management?

Quartiles by TLG

Mid-Treatment Response Assessment

- **PET Responder**: required anatomic adaptation to 60 Gy in 30 fx
- **PET Non-responder**: required functional adaptation to 74 Gy in 30 fx
Mid-Tx PET Response Assessment

- Assessment from panel of FDG PET metrics + Radiology report
- **PET Responders:** ΔSUV$_{\text{max}}$ decrease 36% (23-41%)
- **PET Non-responders:** ΔSUV$_{\text{max}}$ decrease 8% ([−28]−23%)

Baseline Pre RT

3 week Mid RT

Unpublished data.

Mid-Tx PET Response

- 4 studies reporting on PET parameters at predicting tumor response (TR) or progression (TP)

FLARE-RT Boost to Non-Responders

3wk FDG PET/CT

FLARE RT Boost Plan

Unpublished data.

FLARE-RT Planning Technical Workflow

PET/CT

Prescription Function

Dose Discretization

Planning/Delivery

Sub-target Contours

Discrete Contour Prescriptions

• D_{ROI}

• $\min(D_{ROI})$ & $\max(D_{ROI})$

• $\min(DVH_{ROI})$ & $\max(DVH_{ROI})$

PET Imaging Rx

Clinical Planned Dose

Deveau, Bowen et al. 2010 Acta Oncol
FLARE-RT Dose Painting Plan Objectives

FDG PET Boost Objectives

<table>
<thead>
<tr>
<th>Copy Data Below ↓</th>
<th>FDG L1</th>
<th>FDG L2</th>
<th>FDG L4</th>
<th>FDG L7</th>
<th>PTV_midtx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max (SUVbw) Value</td>
<td>2.57</td>
<td>4.73</td>
<td>9.04</td>
<td>15.50</td>
<td>15.50</td>
</tr>
<tr>
<td>Mean (SUVbw) Value</td>
<td>1.85</td>
<td>3.61</td>
<td>7.97</td>
<td>13.89</td>
<td>6.74</td>
</tr>
<tr>
<td>Median (SUVbw) Value</td>
<td>1.89</td>
<td>3.58</td>
<td>7.94</td>
<td>13.78</td>
<td>6.47</td>
</tr>
<tr>
<td>Min (SUVbw) Value</td>
<td>0.54</td>
<td>2.57</td>
<td>6.88</td>
<td>13.36</td>
<td>0.42</td>
</tr>
<tr>
<td>Volume (ml) Value</td>
<td>44.59</td>
<td>63.07</td>
<td>57.41</td>
<td>6.94</td>
<td>314.15</td>
</tr>
<tr>
<td>Mean Dose (Gy)</td>
<td>63.84</td>
<td>67.50</td>
<td>76.56</td>
<td>88.85</td>
<td>74.00</td>
</tr>
<tr>
<td>Median Dose (Gy)</td>
<td>63.93</td>
<td>67.44</td>
<td>76.50</td>
<td>88.63</td>
<td>73.44</td>
</tr>
<tr>
<td>Min Dose (Gy)</td>
<td>61.12</td>
<td>65.34</td>
<td>74.29</td>
<td>87.75</td>
<td>60.88</td>
</tr>
<tr>
<td>Max Dose (Gy)</td>
<td>65.34</td>
<td>69.82</td>
<td>78.77</td>
<td>92.19</td>
<td>92.19</td>
</tr>
<tr>
<td>Weight</td>
<td>14.19</td>
<td>20.08</td>
<td>18.27</td>
<td>2.21</td>
<td>100.00</td>
</tr>
</tbody>
</table>

- Divide FDG avid volume into bins by FDG avidity
- Most avid regions receive >90 Gy, mean dose to boost region 74 Gy
- Functional dose painting tool: MIM workflow → RayStation plan integration

FDG PET/CT-guided Dose Escalation

- NKI+Maastricht: average dose increase to PET avid areas up to 85+ Gy in 24 fractions
- RTOG 1106: dose escalation based on mid Tx PET (up to 80.4 Gy in 30 fractions)
FLARE-RT Dosimetry

Normal tissue dosimetry not significantly different between PET responders and PET non-responders (p > 0.14)

Mid-Tx PET Outcome Stratification

Log rank p = 0.002

Unpublished data.
Mid-Tx PET Toxicity Risk Stratification

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>6 mo (n=25)</th>
<th>6 mo PET-R (n=16)</th>
<th>6 mo PET-NR (n=9)</th>
<th>HR</th>
<th>p</th>
<th>Palma et al. 2013 historical control</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTCAE v4 Grade 2+ Pneumonitis (ε = 9)</td>
<td>26%</td>
<td>44%</td>
<td>11%</td>
<td>0.17</td>
<td>0.092</td>
<td>matched for age & chemo risk factors 38%†</td>
</tr>
</tbody>
</table>

- Pulmonary toxicity risk linked to peak SUV change ($p = 0.033$) rather than tumor volume reduction ($p = 0.32$)
- Grade 3+ esophagitis in 2 patients, both PET-Responders
- Peripheral blood correlative analysis pending

Unpublished data.

Multiparametric Imaging of Functional Lung Response

- Correlation between ↓ perfusion in high dose regions and ↑ inflammation
- Increased post-Tx lung perfusion in low dose regions

Thomas H, Zeng J et al. Under review
Effect of FLARE-RT on Dose-Perfusion Response

- Relative lung perfusion increase in low-dose regions following FLARE-RT
- Baseline high perfusion regions have steeper (more sensitive) dose-response curves

Thomas H, Zeng J et al. Under review

Voxel Forecast Tool: PET Response Prediction for Decision Support

- PET Responder: NED 491 days
- PET Non-responder: Died 323 days

MAE = 1.1 SUV

MAE = 3.3 SUV

Anatomic Adaptation During Lung RT

Table 1 Lung Density Changes Observed Across Multiple Large Patient Studies During Radiation Therapy Treatments

<table>
<thead>
<tr>
<th>Study</th>
<th>No. Patients</th>
<th>Tumor Anatomical Shift</th>
<th>Atelectasis</th>
<th>Pleural Effusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kwint (2014)</td>
<td>177</td>
<td>27%</td>
<td>19%</td>
<td>6%</td>
</tr>
<tr>
<td>Elsayad (2016)</td>
<td>71</td>
<td>10%</td>
<td>20%</td>
<td>25%</td>
</tr>
<tr>
<td>Moller (2014)</td>
<td>163</td>
<td>—</td>
<td>15%</td>
<td>8%</td>
</tr>
<tr>
<td>Van Zwienen (2008)</td>
<td>114</td>
<td>—</td>
<td>29%</td>
<td>13%</td>
</tr>
</tbody>
</table>

Table 2 Tumor Regression Rates for Patients Diagnosed With Stage III NSCLC Treated With Definitive Radiation

<table>
<thead>
<tr>
<th>Study</th>
<th>No. Patients</th>
<th>Imaging Modality</th>
<th>Volume</th>
<th>Median Fraction (Range)</th>
<th>Median Regression (Range)</th>
<th>Median Fraction (Range)</th>
<th>Median Regression (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kataria (2014)</td>
<td>15</td>
<td>Helical kVCT</td>
<td>GTVp</td>
<td>22nd-23rd</td>
<td>–</td>
<td>34% (–13.8% to –73.0%)</td>
<td>30th</td>
</tr>
<tr>
<td>Spoelstra (2008)</td>
<td>21</td>
<td>Helical kVCT</td>
<td>ITVp</td>
<td>15th(14th-17th)</td>
<td>Not reported (+47% to –25%)</td>
<td></td>
<td>25th (21st-33rd)</td>
</tr>
<tr>
<td>Berkovic (2015)</td>
<td>41</td>
<td>kV CBCT</td>
<td>GTVp</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Fox (2013)</td>
<td>22</td>
<td>Helical kVCT</td>
<td>GTVp</td>
<td>15th(46-20th)</td>
<td>–</td>
<td>24% (–0.3% to –61.7%)</td>
<td>30th</td>
</tr>
<tr>
<td>Wald (2017)</td>
<td>52</td>
<td>kV CBCT</td>
<td>GTVp</td>
<td>11th</td>
<td>–</td>
<td>30% (–24.0% to –84.3%)</td>
<td>30th</td>
</tr>
<tr>
<td>Elsayad (2016)</td>
<td>37</td>
<td>kV CBCT</td>
<td>GTVp</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Remelle (2017)</td>
<td>50</td>
<td>Helical kVCT</td>
<td>GTV</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Selbert (2007)</td>
<td>17</td>
<td>MVCT</td>
<td>GTVp</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Kavanaugh J et al. Seminars in Rad Onc. 2019

Uncertainty of Anatomic Adaptation

- Subclinical disease extent
 - Inside initial CTV
 - Inside initial GTV
- When/how often to adapt?
- Accurate dose accumulation calculations?
Pathology

- Studies looking at microscopic tumor extension in surgery specimens
- Variation between studies, and by histology (squamous vs adenocarcinoma) and grade
- All pre-treatment, unclear what happens mid-radiation

Apolle R et al. Clin Trans Rad Onc 2017

MRI Adaptive RT

- Potential for MRI guided personalized/ adaptive RT
- Functional assessment of both target and normal tissues
- Superior soft tissue definition compared to CT

Bainbridge H et al. TLCR 2017.
Conclusions

• More sophisticated imaging modalities will continue to be integrated into the radiation oncology treatment planning & delivery workflow

• Movement towards more personalized radiation therapy
 – Radiation treatment plans that are more biologically targeted, for both tumor and normal tissue
 – More adaptive therapy
 – Continued investigations into the “how” of the process

Acknowledgements

• Radiation Oncology
 – Ramesh Rengan

• Medical Physics
 – Stephen R. Bowen

• Fellows
 – Hannah Thomas
 – Balukrishnan Sasidharan

• Radiology
 – Paul Kinahan
 – Robert Miyaoka
 – Hubert Vesselle
 – Daniel Hippe

• Thoracic Medical Oncology
 – Christina Baik
 – Laura Chow
 – Keith Eaton
 – Bernardo Goulart
 – Sylvia Lee
 – Renato Martins
 – Rafael Santana-Davila
Thank you.

Jing Zeng, MD
jzeng13@uw.edu