Proton Treatment Planning for Pediatric Patients

Austin M. Faught, PhD, DABR
Jacqueline Faught, PhD, DABR
Erika Bowers, CMD

Outline

What makes protons different?
-Austin Faught
 • Comparison of photon and proton dose
 • Emphasis on how physics governs the differences
 • Discussion of delivery techniques

How is the planning process affected?
-Jackie Faught
 • Introduction of concepts unique to protons
 • Robustness
 • Plan setup considerations
 • Treatment accessories

Case studies and practical applications
-Erika Bowers
 • Review of patient cases that illustrate the uses of proton therapy
 • Cranial case
 • CSI case
 • Soft tissue (body site)
The Bragg Peak

- Protons stop in matter
 - Increase in dose at distal end
 - Near zero dose after they stop
- Lower integral dose
- Significant reductions to OARs in some scenarios

Acknowledgements

- Richard Amos, MS
- Naryan Sahoo, PhD
- X. Ron Zhu, PhD
- R. Howell, PhD
Why do protons deposit dose differently?

Protons
- Have mass
- Have positive charge
- Can give up portions of their energy

X-Rays
- No mass
- No charge
- Catastrophic collisions

X-Ray Dose

- Attenuation – change in number of x-rays is proportional to:
 - Number of x-ray’s present
 - Perceived size of particles
 - Thickness traversed
 \[\Delta N \propto \Delta t \times \sigma \times N_0 \]
 \[\frac{\Delta N}{N_0} = \Delta t \times \lambda \]
 \[N = N_0 e^{-\lambda t} \]
Proton Dose

- Two components impacting proton dose
 - How many protons
 - How much energy they give up
 - At the start they’re moving very fast and give up a small, consistent amount
 - As they slow down, they have more time to interact

Proton Dose Calculations

- Analytical algorithms require an HU to relative stopping power conversion
 - CT’s are made from photon transmission
 - Large uncertainty 2-5% associated with conversion
Delivery Techniques

Passive Scattering
- Range Modulator
- Aperture
- Compensator

Scanning Beam
- Scanning Magnets
- Target Volume
- Critical Structure

Courtesy P. Tsiamis

Proton Facility Layout
St. Jude Proton Gantry

Counter weight
C-Shape frame
Retractable Floor

St. Jude Proton Treatment Room

Orthogonal System
Nozzle
X-Ray Tube
Robotic Couch
How is the planning process affected?

Jackie Faught, PhD, DABR

Proton beam arrangements

- Fewer beam angles than IMRT (commonly 2-3)
Proton beam arrangements

• Fewer beam angles than IMRT (commonly 2-3)

IMPT

IMRT

Proton beam arrangement considerations

• Beam path (protons are more sensitive!)
 • Consider everything in the path of the protons – will it be stable?
Proton beam arrangement considerations

• Beam path (protons are more sensitive!)
 • Consider everything in the path of the protons – will it be stable?
Proton beam arrangement considerations

- Beam path
 - Consider everything in the path of the protons – will it be stable?

Effect of hair presence if planned without

Rx Dose Cloud
Proton beam arrangement considerations

- Beam path
 - Consider everything in the path of the protons – will it be stable?
 - Blankets, tubing, hair
- Flash
- Clearance
- Hinge angle

Density overrides

- Metal overrides
 - Generally avoid metals
 - Commonly have surgical clips near target
- CT image artifacts
 - Increased uncertainty
 - Small artifacts may be adequately overridden
Range shifters

• Use material in the beam path to bring the dose toward the patient surface
 • Nozzle mounted range shifters

Range shifters

• Use material in the beam path to bring the dose toward the patient surface
 • Nozzle mounted range shifters
 • Range shifters close to patient
 → Less spread in spot size and penumbra
Accounting for uncertainties in protons

• Sources of uncertainty:
 • Dose delivery (mechanical and radiation)
 • Patient setup
 • Dose calculation
 • PTV concept isn’t translatable to proton therapy
 • Uncertainty in range creates unique margins for each beam
 • Robust optimization to CTV
 • Robust = “capable of performing without failure under a wide range of conditions”

Robust optimization

• Perturb plan by a set of uncertainties
• Optimize plan to best achieve objectives under all scenarios
• Commonly used uncertainty perturbations for standard cases:
 • 3% range uncertainty
 • 3 mm
• Multi-iso plans: Beam specific robustness also used to account for potential movement of isocenters relative to one another
Robust optimization

- Robustness evaluated post-optimization by evaluating DVHs and corresponding dose distributions

Case Studies and Practical Applications

Erika Bowers, CMD
Standard Cranium

- Beam arrangements:
 - Typically 2 beams are chosen so that use the shortest and most homogenous path through healthy tissue.
 - Avoid entering through metal whenever possible.
 - All beams should avoid pointing the distal end toward OARs because of range uncertainty.
Standard Cranium

- Robustness Goal: 95% of CTV = 95% of RX

CSI – Standard

- Isocenter Placement
- Beam Angles
- Field Specific Targets
- Robustness
CSI – Standard

- Isocenters Placement:
 - CBCT Restrictions/Considerations
 - St. Jude = 14cm per jaw
 - DO NOT clip C-Spine/Neck Area
 - DO NOT clip Sacrum

- Keep all 3 Isocenters in the same plane
 - 3 Isocenters is best for patient set up, but can take longer to treat.
CSI – Standard

- Beam Angles:
 - Cranium Fields - Posterior Obliques
 - Beam 1 - Gantry 150° & Couch 0°
 - Beam 2 - Gantry 150° & Couch 180°
 - Spine Fields – PA
 - Beam 3 - Gantry 180° & Couch 180°
 - Beam 4 - Gantry 180° & Couch 180°

- Field Specific Targets:
 - CTV Cranium
 - CTV Spine
 - OTV Total
 - OTV Cranium
 - OTV Spine
 - VB (age dependent)
 - Under 13 = Treat
 - Over 13 = Spare
 - VB dose = 80% of Rx up to 20 Gy
 - OTV SUP
 - OTV MID
 - OTV INF

OTV SUP = 7 cm
OTV MID = 7 cm
OTV INF = 7 cm
CSI – Standard

- Robustness:
 - Optimize with **3mm & 3%** on OTV Spine and CTV Cranium
 - Additional **5mm** on middle field (upper spine) in the X direction (sup-inf).

CSI – Brainstem Sparing
CSI – Brainstem Sparing

- The addition of a lateral beam allows carving of the brainstem and previously treated area, while still giving adequate dose to the target anterior to these areas.

Soft Tissue

- Consider Anatomy and quickest/most stable path to the target.
Soft Tissue

- Consider Anatomy and quickest/most stable path to the target.

- Beam Angles
 - Anterior
 - Beam 1 - Gantry 30° & Couch 0°
 - Beam 2 - Gantry 30° & Couch 180°
 - Posterior
 - Beam 3 - Gantry 150° & Couch 0°
 - Beam 4 - Gantry 150° & Couch 180°
Soft Tissue

Questions?

Austin M. Faught, PhD, DABR
Jacqueline Faught, PhD, DABR
Erika Bowers, CMD