Staying on Script:
Automating the Plan Check Process and Beyond

Grayden MacLennan, MBA, MSM, MS, CMD

Disclosures

• No personal disclosures

• This presentation mentions a few commercial software packages
About the Presenter

• Grayden MacLennan, MBA, MSM, MS, CMD

• Unusual career path
 – Pathology Lab Tech
 – IT Guy & Webmaster
 – Medical Imaging Software Trainer
 – Medical Dosimetrist
About the Presenter

• Computer enthusiast, but not a natural born programmer

• Career goal:
 – Learn enough coding to automate the tedious parts of medical dosimetry (and maybe physics)
 – Make more time for the cool stuff

Roadmap for Today

• Learning news skills
• Basic skills for scripting
• Understanding data
• Learning how to access data
• What do you DO with the data?
• Scripting examples from several centers
• Looking for plan quality too
Learning New Skills

(not his first day)

Learning a New Skill

• Today we’ll aim a bit lower
Learning a New Skill

• Don’t get intimidated
 – You don’t need to learn it all

• Remember the 80/20 rule
 – 80% of the results come from 20% of the skills

• What are the bare minimum skills needed?

Operating a Car

• Bare minimum skills
 – Acceleration
 – Braking
 – Steering

• Advanced topics
 – Turn signals
 – Road markings
 – Traffic laws
Computer Automation

- Simple and repetitive tasks done on a computer can often be automated

Scripts for Automation

- What is a script?
 - Series of precise instructions
 - Written in a way a computer can understand

- Basic concept:
 - **Find** some data
 - **Do** something with it
Plan Check Tasks

- Most plan check tasks are simple
 - Look up an important piece of data
 - Compare its value to an expected value (optional)
 - Report what was found

- Most plan check scripts are just these couple actions repeated again and again

What Data?

- Patient info
- Technical plan parameters
- Plan completeness
- Plan quality
- Data transfer integrity
- Etc...
Why Do This?

- AAPM TG-100
 - Application of risk analysis methods to radiation therapy quality management

- AAPM TG-275
 - Strategies for Effective Physics Plan and Chart Review in Radiation Therapy

This Has Been Discussed

The 80/20 of Scripting

• Huge portion of plan checking can be done with just a few core concepts
 1. Relational operations
 2. Conditionals
 3. Loops
 4. Structured data

Core Concepts

1. Relational operations
2. Conditionals
3. Loops
4. Structured data
1. Relational Operations

• Compare two values to each other
 < Less than
 > Greater than
 == Equal to
 != Not equal to

• Two possible outcome of a relational test
 – True
 – False

1. Relational Examples

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 < 10</td>
<td>True</td>
</tr>
<tr>
<td>Salary > $100,000,000</td>
<td>False</td>
</tr>
<tr>
<td>Speaker == “Grayden”</td>
<td>True</td>
</tr>
<tr>
<td>Topic != “horticulture”</td>
<td>True</td>
</tr>
</tbody>
</table>
Core Concepts

1. Relational operations
2. Conditionals
3. Loops
4. Structured data

2. Conditionals

- True/False tests can guide behavior

```java
if (hungry)
    eat
```
2. Conditionals

- Combine a conditional with a relational test...

```python
if (plan MU > 100000)
    print “hey now”
```

2. if/else Statements

- Alternative action can be specified with “else”

```python
if (feelinglucky)
    say “Go Sooners!”
else
    say “Go Longhorns!”
```
Core Concepts

1. Relational operations
2. Conditionals
3. Loops
4. Structured data

3. Loops

• If something needs to be done multiple times, a loop is what you need

• Two kinds of loops
 – “While” loops
 – “For” loops
3. “While” Loops

- Everything in the loop is done while the test condition is still true

```java
while (presentation not finished)
    advance slide
    talk about slide
```

3. “For” Loops

- To do something for each item in a set or list

```java
for each person in audience
    check if conscious
```
Core Concepts

1. Relational operations
2. Conditionals
3. Loops
4. Structured data

4. Structured Data

- Data can be found in many forms
 - Basic types
 - Lists
 - Classes
4. Basic Data

- Basic types store one piece of information
 - **Number** (e.g. – Prescription dose)
 - **Text** (e.g. – Name)
 - **True/False** (e.g. – Plan approved)
 - Also called “Boolean”

4. Lists

- A way to reference **multiple** similar items

- Could potentially be a list of **other lists**
4. Classes

- A framework for wrapping together related pieces of information
- Creates naming convention for accessing data components
- Can create links to other classes
 - Allows construction of data hierarchies
- More of a road map than actual data itself

4. Hierarchy Example

- Folder structure is good example of hierarchy

C:\Pictures\Memes\Cats\grumpy_cat.jpg
4. Hierarchy for Plans

- Plans have complex multilayered relationships

- “Drilling down”
 - A patient has treatment courses
 - A course has plans
 - A plan has beams
 - A beam has MLCs
 - An MLC has leaf positions
 - ...
Scripting for Plan Checks

• Computers are good at well-defined repetitive tasks
• Classes provide a structure to clearly define the data that needs to be evaluated
 – Relationships between classes make it possible to walk through the data tree to select the right data
• Repetition is easy with loops and conditional statements

Where is the Data?

MacLennan 2018 37

MacLennan 2018 38
Data Locations

• Data for a plan check is most often:
 – In the treatment planning system
 – In a database server
 – In a folder on a network drive

Data in a Plan Check

• Most common files examined in plan checks
 – DICOM and DICOM-RT
 • Image sets, most likely CT and DRR
 • RT Structure Sets (ROIs)
 • RT-Plan
 • RT-Dose
 – Documents
 • PDF
 • Text
Getting to the Data

• For whatever plan check task we want to perform, we need to figure out how to feed data into it
• Data may not follow a class structure while in its stored or retrieved state
 – It must be read from its source and loaded into the logical structure defined by classes

Reading Data Sources

• That wasn’t part of the deal!
 – We thought we only needed a handful of high level comparison and loop commands
 – Reading data sources uses lots of low level code and commands
High Level vs. Low Level

- A simple command can be broken successively into more and more detailed subcommands

“High level” instructions
- Open Door
- Grasp Doorknob
- Turn Doorknob

“Low level” instructions
- Excrete Ca$^{2+}$ from sarcoplasmic reticulum in Supinator Muscle

Using Middlemen

- High-level instructions are much easier for us
- We need a mechanism to shield us from having to know all the low level details
All About APIs

- API = Application Programming Interface
- Acts as a middleman to provide a more friendly way to interact with a system
- Defined by software makers to provide:
 - List of data objects that can be accessed
 - List of actions that can be performed

Data Access with APIs

- Objects are unique instances of a class that have already been loaded with data.
 - They follow the rules and structure of the class
- Dot notation is usually used for exploring the object’s data tree
 - Patient.Name.Last → Paulson
 - Patient.Name.First → Robert
Scripts in the Real World

Many Ways to Get Data
What Are You Using?

Emory’s Script

- Runs inside RayStation
 - Uses RayStation’s built-in scripting API
 - Written in Python

- Creates detailed plan summary
- Looks for common problems

- Output goes to a text file
Emory's Approach

- Treatment Planning System
 - Scripting API
 - Scripting System

Emory: User Interface

- To use Emory's script, open the Scripting tab in RayStation
 - Select the script and run it
- Final output will pop up in a Notepad window
Emory: Plan Info

- Printout includes basic information:
 - Patient name
 - Patient ID
 - Plan name
 - Treatment site
 - Treatment planning CT
 - CT to ED table name

Emory: Image check

- Compare CT’s acquisition energy to name of CT-ED table
 - Warn if mismatch

- Compare CT’s patient position to plan patient position
 - Warn if mismatch
Emory: Dose & Setup

- Checks that dose is calculated
- Check that dose grid size 3 mm or less
- Check that a CT marker POI exists
- Check that a couch ROI exists

Emory: Contour Check

- Loop through each ROI:
 - Check if ROI is empty
 - Check if ROI has density override
 - Check if ROI export enabled

- Print list of empty ROIs
- Print list of ROIs with overrides
- Print list of ROIs to be exported
Emory: Beamset Check

- Loop through each beamset in plan:
 - Identify if background dose or planned dose
 - Warn if no beams in beamset
 - Print:
 - Beamset name
 - Prescribed dose
 - Number of fractions
 - Dose grid size
 - Treatment room
 - Robustness parameters if used

Emory: Beam Info

- Loop through each beam in beamset:
 - Print info:
 - Beam number
 - Beam description
 - Snout name
 - Air gap
 - Beam dose
 - Avoidance ROI if applicable
 - Layer repainting setting
Emory: Beam Warnings

- Loop through each beam in beamset:
 - Report common problems as applicable:
 - Dose specification point missing
 - Aperture is misnamed
 - No POI matches beam isocenter location
 - No range shifter selected
 - Beam number does not match name
 - Air gap not appropriate for range shifter

- Loop through each beam in beamset:
 - Report common problems as applicable:
 - Gantry angle does not appear in beam name
 - Couch angle does not appear in beam name
 - Isocenter more than 5 cm from target ROI center
 - Beam or couch angle not achievable with selected treatment room
 - Repainting not selected if plan name includes “lung”
Emory: Proton Warnings

- Loop through each PBS layer in beam:
 - Report common problems as applicable:
 - Layer energy not deliverable
 - Layer contains only 1 PBS spot
 - Layer delivers less than minimum weight
 - Minimum spot weight not adjusted for repainting

What Are You Using?

Eric Ford, PhD, FAAPM
Patricia Sponseller, MS, CMD, RT(R)(T)
University of Washington Medical Center
Seattle, WA
UW’s Script

- Runs inside Pinnacle
 - Uses Pinnacle’s built-in scripting API
 - Uses Pinnacle’s proprietary language
 - Currently being rewritten for RayStation

- Creates detailed plan summary
- Looks for common problems
- Prompts user to identify less common scenarios

- Output goes to a window in Pinnacle

UW’s Approach

[Diagram showing the treatment planning system and scripting system]
UW: SBRT?

• Ask if the plan is SBRT

• If yes
 – Ensure selected vault is SBRT-capable
 – Dose grid must be smaller than usual

UW: Pacemaker?

• Ask if patient has pacemaker

• If yes
 – Verify that all beams are low energy
What Are You Using?

Hsiao-Ming Lu, PhD
Massachusetts General Hospital
Boston, MA
MGH’s Program

• Standalone program called planCheck
• Developed in-house
• Reads data from:
 – PDF plan printouts in R&V database
 – PDF MU 2nd Check printout in R&V database
• Compares PDF data to:
 – Plan values entered into R&V database
 – Plan data held in “TPDB” ancillary database

MGH: Data Sources

[Diagram showing data sources: Treatment Planning System, MU Second Check, Record & Verify Database, “TPDB”, Scripting System]
MGH: Standard Checks

- Basic checks applied to all plans
 - Prescription signed in R&V
 - Plan document signed in PDF
 - Any overdue treatments?
 - Dose coefficients calculated in Mosaiq?
 - Appropriate calculation algorithm selected?

MGH: Per-Type Checks

- `planCheck` defines several `treatment classes` based on treatment types and modalities
 - Each class has checks unique to it
 - Inheritance allows compiling of final set of checks based on class membership
MGH: Class Example

- Proton XiO patient class checks
 - CT calibrated?
 - Calibration appropriate?
 - Beams have same name and snout?
 - Isocenter matching between beams?
 - Each beam has a DRR?
 - Many many more…

planCheck Interface
What Are You Using?

Fazal Khan, CMD
Miami Cancer Institute
Baptist Health South Florida
Miami, FL

MCI: Scripts

- Standalone scripts running in Python interpreter

- Reads plan data directly from DICOM files exported by TPS to a folder

- API
 - "pydicom" enables loading of DICOM files into Python objects for easy access
MCI: Bypassing the TPS

- Treatment Planning System
- Scripting API
- Scripting System

MCI: What’s Inside DICOM

- DICOM is simultaneously a complex format and a simple format
 - Each piece is simple
 - Simple pieces have to be put in just the right spot
MCI: Simplified RT-Struct

- DICOM RT-Struct stores ROIs
- Most of an RT-Struct file is just long lists of Connect-the-Dot coordinates

MCI: Stray Voxel Finder

- To find disconnected stray voxels, look through all the lists of contours and find any with fewer than 5 points

```python
for each ROI in rtstruct.ROIContourSequence
    for each contour_slice in ROI.ContourSequence
        if contour_slice.NumberOfContourPoints < 5
            print an alert
```
MCI: Beam Name Check

- DICOM plan files are more complex
- We can selectively examine some branches of the whole tree

```
plan
   IonBeamSequence[]
   BeamName
   IonControlPointSequence[]
       GantryAngle
       PatientSupportAngle
```

MacLennan 2018 81

MCI: Beam Name Check

- To access the gantry angle:

  ```
  plan.IonBeamSequence.IonControlPointSequence[0].GantryAngle
  ```

- To access the beam name:

  ```
  plan.IonBeamSequence.BeamName
  ```

- Does the text of the **gantry angle** show up inside the **beam name**?
Does this appear in there?

Looks like that comparison...
...has met its match

MCI: Miami

YEAAAAAAAAAAAAAA
Quality Checks

• So far we’ve focused on black/white concepts like detecting errors
• Scripts can also focus on gray-area ideas like plan quality
 – Does a plan meet clinical goals?
 • Target coverage
 • OAR sparing
 • Conformality
 – If not, how close were we?
SBRT Worksheets

- Currently at MCI, SBRT cases are evaluated by manually filling out an Excel spreadsheet

MacLennan 2018 89

SBRT Worksheets

- OARs must be chosen based on treatment site and goal values must be entered manually
Clinical Goal Lookup

Single fraction

Three fraction

Five fraction

SBRT Worksheets

- DVH values must be manually looked up and written into the spreadsheet
SBRT Worksheets

- DVH values must be manually looked up and written into the spreadsheet

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinal Cord</td>
<td>0.4</td>
<td>12.8</td>
<td>22.0</td>
<td>14.4</td>
</tr>
<tr>
<td>Esoophagus</td>
<td>5.0</td>
<td>24.5</td>
<td>27.5</td>
<td>29.3</td>
</tr>
<tr>
<td>Lung R Only</td>
<td>37%</td>
<td>8.0</td>
<td>13.5</td>
<td>15.6</td>
</tr>
<tr>
<td>Skin</td>
<td>750.0</td>
<td>7.2</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>15.0</td>
<td>9.3</td>
<td>32.0</td>
<td>31.2</td>
</tr>
</tbody>
</table>
SBRT Worksheets

- Clinical goal pass/fail must still be determined manually and recorded.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinal Cord</td>
<td>0.4</td>
<td>12.8</td>
<td>22.0</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>11.8</td>
<td>15.6</td>
<td>yes</td>
</tr>
<tr>
<td>Esophagus</td>
<td>5.0</td>
<td>24.3</td>
<td>37.5</td>
<td>yes</td>
</tr>
<tr>
<td>Lung R Only</td>
<td>37%</td>
<td>8.0</td>
<td>13.5</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>750.0</td>
<td>7.2</td>
<td>12.5</td>
<td>yes</td>
</tr>
<tr>
<td>Skin</td>
<td></td>
<td></td>
<td></td>
<td>yes</td>
</tr>
<tr>
<td>Heart</td>
<td>15.0</td>
<td>9.3</td>
<td>32.0</td>
<td>yes</td>
</tr>
</tbody>
</table>

SBRT Worksheets

- Oops! To save space, different goals were crammed onto the same line on this sheet.
Is There a Better Way?

- Tedious manual processes are error-prone

Automating Clinical Goals

- Several commercial treatment planning systems already incorporate some level of automated clinical goal checking.
 - Some can load pre-made templates
 - Some require you to set up goals by hand
Commercial Software

- There is plenty of 3rd party plan check software available for purchase too
- Does not require any programming
- DOES require some setup and configuration

Example: ClearCheck

- Uses the Eclipse Scripting API (ESAPI)
- Runs as a Plugin inside Eclipse
 - The actual interface appears as a new window
- ClearCheck runs a wide variety of tests
 - Plan parameters and ROI checks
 - Clinical goals scorecard
Clinical Goals in Eclipse

- ClearCheck’s clinical goals scorecard is especially appealing for Eclipse
- Eclipse has a protocols feature that can load goal templates
 - Specific to protocol, not patient
- ClearCheck can load an initial template and then customize it for each patient

MacLennan 2018

ClearCheck Scorecard
Don’t Need Spreadsheet

- All of the data that had to be manually entered into the Excel spreadsheet is automatically pulled from the plan

- Could potentially work on imported plans from other treatment planning systems too

Time to Wrap Up
Some Takeaways

• Automated plan checks are a hot topic
 – Multiple home-brew solutions
 – Multiple commercial solutions
• Safety is enhanced and quality can get more attention when automation helps out
• You can do interesting projects with only basic understanding of coding
 – The more you learn, the fancier it can be

Programming Secret

• Most of programming is just getting good at using Google
Acknowledgements

- Fazal Khan, CMD
 – Miami Cancer Institute, Miami, FL
- Craig McKenzie, CMD
 – Miami Cancer Institute, Miami, FL
- Samantha Hedrick, PhD, DABR
 – Emory Proton Therapy Center, Atlanta, GA
- Eric Ford, PhD, FAAPM
 – University of Washington Medical Center, Seattle, WA
- Patricia Sponseller, MS, CMD, RTT(R)(T)
 – University of Washington Medical Center, Seattle, WA
- Hsiao-Ming Lu, PhD
 – Massachusetts General Hospital, Boston, MA

Questions?