Bilateral Breast Cancer: A Challenging Task in Radiation Therapy

Presented by Karen Long, CMD, MRT (T)
Tom Baker Cancer Centre
Calgary, Alberta Canada
1
3D CRT planning technique used to treat bilateral chest wall plus RNI including bilateral IMNs

2
Controversy in radiotherapy for patients with synchronous bilateral breast cancers and comprehensive RNI
International practices: review of a dosimetrists's survey

Bilateral Breast Cancer: A Challenging Task in Radiation Therapy

*Synchronous, bilateral breast cancer: prognostic value and incidence.
*Jobseen JL, van der Paten J, Ong F, Meenwalt JH
Dosimetric Planning Techniques for Bilateral Breast Cancer Survey
Tom Baker Cancer Centre

Best practice for patients with bilateral breast cancers?

Evidence for Breast Cancer Nodal RT

- **MA20** _Regional Nodal Irradiation (RNI) in Early-Stage Breast Cancer_
- **EORTC 22922** _Internal Mammary and Medial Supraclavicular Irradiation in Breast Cancer_
- **DBCG-IMN** _A Population-Based Cohort on the Effect of Internal Mammary Node (IMN) Irradiation in Early Node-Positive Breast Cancer_
In general, if a patient with breast cancer is treated with RNI at your center, would the IMNs be included in the target volume?

- Yes: 61%
- No: 39%
Is there a trend based on geographic regions as to whether IMNs are included in RNI?

<table>
<thead>
<tr>
<th>Region</th>
<th>Total Respondents (n = 135)</th>
<th>Centers irradiating IMNs (n = 82)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>96</td>
<td>58 (60%)</td>
</tr>
<tr>
<td>Europe</td>
<td>17</td>
<td>11 (65%)</td>
</tr>
<tr>
<td>Asia</td>
<td>9</td>
<td>5 (56%)</td>
</tr>
<tr>
<td>Oceania</td>
<td>8</td>
<td>4 (50%)</td>
</tr>
<tr>
<td>South America</td>
<td>5</td>
<td>4 (80%)</td>
</tr>
</tbody>
</table>
Literature Review

Radiation therapy of synchronous bilateral breast carcinoma (SBBC) using multiple techniques.
Kim SJ1, Lee MK2, Yoon SH3

Journal of Radiation Oncology
March 2017, Volume 6, Issue 1, pp 73–80 | Cite as

Strategies for bilateral breast and comprehensive nodal irradiation in breast cancer—a comparison of IMRT and 3D conformal radiation therapy

Authors

“This is the first study of bilateral breast with regional nodal irradiation. Radiotherapy for bilateral breast and regional lymph nodes is best achieved using IMRT due to its superior ability to cover the target volumes, while minimizing dose to organs at risk. Further studies will reveal if higher integral lung dose translates into clinically significant chronic toxicity given the excellent long-term survival in these patients.”
Evaluation of target and cardiac position during visually monitored deep inspiration breath-hold for breast radiotherapy

Leigh Connery, Rosanna Yeung, Elizabeth Watt, Sarah Quirk, Karen Long, Alana Hudson
Tien Phan and Wendy L. Smith

Free Breathing Deep Inspiration Breath Hold

AAMD 43rd Annual Meeting

June 17 – 21, 2018
Does your center use deep inspiration breath hold (DIBH) strategies to treat any breast cancer patients?

- Yes: 59%
- No: 41%

Does your center use a DIBH technique for patients receiving simultaneous bilateral chest wall/breast radiation therapy?

- Yes: 29%
- No: 63%
- Other: 8%
Low incidence

Small patient cohorts

Best practice?

DIBH?

No consensus

Challenging treatment planning
48 Year Old Woman
Bilateral Mastectomy and Axillary Dissection
Bilateral Chest walls, RNI and IMNs

Which technique describes the treatment planning method most commonly used for this patient, in your center?

- Static photon fields only (forward planned field-in-field, 3D CRT, etc.)
- Static photon(s) plus electron(s) fields (forward planned field-in-field, 3D CRT, etc.)
- IMRT step and shoot
- IMRT sliding window
- VMAT (RapidArc®, Tomotherapy®, etc.)
- Other: please specify
Technique (n = 64)

- VMAT: 41%
- 3D CRT P/E: 22%
- IMRT: 20%
- Photon Arc: 13%
- Photons only: 6%
- Photons plus electrons: 2%
- IMRT step and shoot: 1%
- VMAT: 1%
- Protons: 1%

FB vs DIBH

- VMAT
- 3D Photons/Electrons

DIBH vs Free Breathing
How many patients have received radiation therapy for bilateral synchronous breast cancer in your center in the last year?

- 1 to 5: 68%
- 6 to 10: 23%
- 11 to 15: 6%
- Over 15: 3%
3D CRT Mono-Isocentric Photon Plus Electron

Anterior Mid Chest Photon
3D CRT Mono-Isocentric Photon
Plus Electron
3D CRT Mono-Isocentric Photon
Plus Electron

1cm

125%
95%
50%
10%

Hot spot
Field Summary = 8 Fields

7 Photon plus 1 Electron (9MeV)

<table>
<thead>
<tr>
<th>Field Summary</th>
<th>8 Fields</th>
<th>7 Photon plus 1 Electron (9MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon</td>
<td>Electron</td>
<td>Total</td>
</tr>
<tr>
<td>7 Photon</td>
<td>1 Electron</td>
<td>8 Fields</td>
</tr>
<tr>
<td>9MeV</td>
<td>9MeV</td>
<td>9MeV</td>
</tr>
</tbody>
</table>

Field Rendering

- **Modulation as seen on the Skin**
- **Rendering**
- Field Summary = 8 Fields
- 7 Photon plus 1 Electron (9MeV)
3D Breath Holds (minimum)

3D Photon/Electron
- 3 practice breaths
- 3 verification images
- 4 skin markings
- 8 treatment fields

___ = 18

Field Summary = 8 Fields
AP/PA Bilateral Supraclavicular and 6 Conformal Arcs
Assessing number of ARCs and Delivery Time

<table>
<thead>
<tr>
<th>ARC</th>
<th>Average Gantry Speed</th>
<th>Degrees</th>
<th>~Delivery Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW1</td>
<td>5</td>
<td>90</td>
<td>18</td>
</tr>
<tr>
<td>CW2</td>
<td>5.5</td>
<td>91</td>
<td>17</td>
</tr>
<tr>
<td>CW3</td>
<td>5.5</td>
<td>137</td>
<td>25</td>
</tr>
<tr>
<td>CW4</td>
<td>4.5</td>
<td>136</td>
<td>30*</td>
</tr>
<tr>
<td>CCW1</td>
<td>5.5</td>
<td>90</td>
<td>16</td>
</tr>
<tr>
<td>CCW2</td>
<td>3.5</td>
<td>89</td>
<td>25</td>
</tr>
</tbody>
</table>

VMAT Breath Holds (minimum)

VMAT Hybrid
- 3 practice breaths
- 2 verification images
- 8 treatment fields

\[= 13\]
Organs at Risk: Lungs, Heart and Left Anterior Descending Artery (LAD)

DVH Plan Comparison

DEVELOPMENT AND VALIDATION OF A HEART ATLAS TO STUDY CARDIAC EXPOSURE TO RADIATION FOLLOWING TREATMENT FOR BREAST CANCER

MARY FENG, M.D.,* JEAN M. MORGAN, Ph.D.,* TODD KELLING, M.D.,† AAMER CHUGHIAL, M.D.,‡ JUN L. CHEN, M.D.,‡ LAURA FREIDMAN, M.D.,* JAMES A. HATMAN, M.D.,* RHEEMA JAGI, M.D., D. PHIL.,* SHRUTI JOLLY, M.D.,* JANICE LAROCHE, M.D.,* JUAN SORIANO, M.D.,* ROBIN MARSH, C.M.D.,* and LORE J. PIERCE, M.D.*
NSABP B51 Dosimetric Criteria Targets

<table>
<thead>
<tr>
<th>Structure</th>
<th>Dose Criteria</th>
<th>Variation Acceptable</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest wall Target_3D</td>
<td>95% Vol = 95% Dose</td>
<td>90% Vol = 90% Dose</td>
<td>95% Vol = 93.5% Dose</td>
</tr>
<tr>
<td>Chest wall Target_VMAT</td>
<td></td>
<td></td>
<td>95% Vol = 93.0% Dose</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure</th>
<th>Dose Criteria</th>
<th>Variation Acceptable</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMN_3D</td>
<td>95% Vol = 90% Dose</td>
<td>90% Vol = 80% Dose</td>
<td>95% Vol = 81% Dose</td>
</tr>
<tr>
<td>IMN_VMAT</td>
<td></td>
<td></td>
<td>95% Vol = 85% Dose</td>
</tr>
</tbody>
</table>

Please define how the IMN contour is drawn in your center?

<table>
<thead>
<tr>
<th>Answer Choices</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTOG Guideline</td>
<td>68%</td>
</tr>
<tr>
<td>EORTC Guideline</td>
<td>9%</td>
</tr>
<tr>
<td>N/A</td>
<td>14%</td>
</tr>
<tr>
<td>Other</td>
<td>9%</td>
</tr>
</tbody>
</table>

What is your center’s IMN dose metric?

- V95%
- V90%
- V80%
- n/a
- Other
NSABP B51 Dosimetric Criteria
Heart

<table>
<thead>
<tr>
<th>Structure</th>
<th>Dose Criteria</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart (10%)_3D</td>
<td>≤ 25 Gy</td>
<td>9.74 Gy</td>
</tr>
<tr>
<td>Heart (10%) VMAT</td>
<td>10.80 Gy</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure</th>
<th>Dose Criteria</th>
<th>Variation Acceptable</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Mean_3D</td>
<td>≤ 4 Gy</td>
<td>≤ 5 Gy</td>
<td>5.1 Gy</td>
</tr>
<tr>
<td>Heart Mean VMAT</td>
<td></td>
<td></td>
<td>5.6 Gy</td>
</tr>
</tbody>
</table>

Dose Comparison
Left Anterior Descending Artery (LAD)

<table>
<thead>
<tr>
<th>Structure</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAD Maximum 3D</td>
<td>11.87 Gy</td>
</tr>
<tr>
<td>LAD Maximum VMAT</td>
<td>15.50 Gy</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAD Mean_3D</td>
<td>6.30 Gy</td>
</tr>
<tr>
<td>LAD Mean VMAT</td>
<td>10.8 Gy</td>
</tr>
</tbody>
</table>
Does your center have an LAD dose constraint for breast cancer patients?

- LAD Mean: 20%
- LAD Maximum: 35%
- Heart Dose Maximum: 15%
- Other: 30%

In your center is the LAD contoured?

- Yes: 40%
- No: 60%
NSABP B51 Dosimetric Criteria

Lung

<table>
<thead>
<tr>
<th>Structure</th>
<th>Dose Criteria</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung V20_3D</td>
<td>≤ 35%</td>
<td>18.5%</td>
</tr>
<tr>
<td>Lung V20 VMAT</td>
<td></td>
<td>24.3%</td>
</tr>
</tbody>
</table>

Lung _3D

<table>
<thead>
<tr>
<th>Structure</th>
<th>Dose Criteria</th>
<th>Variation Acceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung_3D</td>
<td>V10 = 35.6%</td>
<td>V5 = 56.5%</td>
</tr>
<tr>
<td>Lung VMAT</td>
<td>V10 = 40.9%</td>
<td>V5 = 54.3%</td>
</tr>
</tbody>
</table>

Is any lung dose constraint evaluated for bilateral breast cancer patients that is not routinely evaluated for unilateral breast patients?

- **Yes**
- **No**

Most common dose constraint:

V20 ≤ 20% - 30%
Dosimetric Criteria “Maximum Dose”

<table>
<thead>
<tr>
<th>Maximum Point Dose = 0.03cc</th>
<th>NSABP B51 Dose Criteria</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>≤ 125%</td>
<td>120%</td>
</tr>
<tr>
<td>VMAT</td>
<td>N/A</td>
<td>112%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dosimetric Criteria</th>
<th>3D</th>
<th>VMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest wall Target</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>IMN Target</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Heart 10%</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Heart Mean</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>LAD</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Lung V20</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lung V10</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Lung V5</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Monitor Units</td>
<td>1232</td>
<td>1235</td>
</tr>
</tbody>
</table>
Anatomical advantage from DIBH

Dosimetric Comparisons

3D Photons and Electrons

VMAT

Time required for Unilateral and Bilateral Breast Treatment Planning (respondents irradiating IMNs)

- Unilateral Plan Time
- Bilateral Plan Time

<table>
<thead>
<tr>
<th>Time Duration</th>
<th>Bilateral</th>
<th>Unilateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>LESS THAN 2 HOURS</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>2 HOURS TO 0.5 DAY</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>0.5 TO 1.0 DAY</td>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>GREATER THAN 1.0 DAY</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>

GREATER THAN 1.0 DAY
Treatment Appointment Time Scheduled in the Second Week of Treatment

<table>
<thead>
<tr>
<th></th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMRT</td>
<td>35</td>
</tr>
<tr>
<td>3D Photons/Electrons</td>
<td>37</td>
</tr>
<tr>
<td>VMAT</td>
<td>27</td>
</tr>
</tbody>
</table>

Clinical Priorities

<table>
<thead>
<tr>
<th>Clinical Priority</th>
<th>Percentage ranking “Most Important” (n = 55)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Coverage</td>
<td>69%</td>
</tr>
<tr>
<td>Integral Dose</td>
<td>5%</td>
</tr>
<tr>
<td>Dose Homogeneity</td>
<td>0%</td>
</tr>
<tr>
<td>Dose to Normal Tissues</td>
<td>26%</td>
</tr>
</tbody>
</table>
Conclusions and Future Work

Thank You!
Acknowledgements

Dr. Michael Roumeliotis
Dr. Tien Phan
Darren Graham

Dr. Sarah Quirk
Dr. Ivo Olivotto
Nils Bergman

karen.long2@ahs.ca